Noncommutative Analysis

Tag: subproduct system

The never ending paper

My paper On operator algebras associated with monomial ideals, written jointly with Evgenios Kakariadis, has recently appeared in Journal of Mathematical Analysis and Applications. They gave me a link to share (the link will work for the next several weeks): click here for an official version of the paper.

The paper is a very long paper, so it has a very long introduction too. To help to get into the heart of editors and referees, we wrote, at some point, a shorter cover letter which attempts to briefly explain what the main achievements are. See below the fold for that.

But first, a rant!

Read the rest of this entry »

Souvenirs from Bangalore

I recently returned from the two week long workshop and conference Recent Advances in Operator Theory and Operator Algebras which took place in ISI Bangalore. As I promised myself before going, I was on the look-out for something new to be excited about and to learn. The event (beautifully organized and run) was made of two parts: a workshop, which was a one week mini-school on several topics (see here for topics) and a one week conference. It was very very broad, and there were several talks (or informal discussions) which I plan to pursue further.

In this post and also perhaps in a future one I will try to work out (for my own benefit, mostly) some details of a small part of the research presented in two of the talks. The first part is the Superproduct Systems which arise in the theory of E_0-semigroups on type II_1 factors (following the talk of R. Srinivasan). The second (which I will not discuss here, but perhpas in the future) is the equivalence between the Baby Corona Theorem and the Full Corona Theorem (following the mini-course given by B. Wick). In neither case will I describe the most important aspect of the work, but something that I felt was urgent for me to learn. 

Read the rest of this entry »