Noncommutative Analysis

Tag: matrix convex sets

The complex matrix cube problem summer project – summary of results

In the previous post I announced the project that I was going to supervise in the Summer Projects in Mathematics week at the Technion. In this post I wish to share what we did and what we found in that week.

I had the privilege to work with two very bright students who have recently finished their undergraduate studies: Mattya Ben-Efraim (from Bar-Ilan University) and Yuval Yifrach (from the Technion). It is remarkable the amount of stuff they learned for this one week project (the basics of C*-algebras and operator spaces), and that they actually helped settle the question that I raised to them.

I learned a lot of things in this project. First, I learned that my conjecture was false! I also learned and re-learned some programming abilities, and I learned something about the subtleties and limitations of numerical experimentation (I also learned something about how to supervise an undergraduate research project, but that’s besides the point right now).

Statement of the problem

Read the rest of this entry »

Dilations, inclusions of matrix convex sets, and completely positive maps

In part to help myself to prepare for my talk in the upcoming IWOTA, and in part to help myself prepare for getting back to doing research on this subject now that the semester is over, I am going to write a little exposition on my joint paper with Davidson, Dor-On and Solel, Dilations, inclusions of matrix convex sets, and completely positive maps. Here are the slides of my talk.

The research on this paper began as part of a project on the interpolation problem for unital completely positive maps*, but while thinking on the problem we were led to other problems as well. Our work was heavily influenced by works of Helton, Klep, McCullough and Schweighofer (some which I wrote about the the second section of this previous post), but goes beyond. I will try to present our work by a narrative that is somewhat different from the way the story is told in our paper. In my upcoming talk I will concentrate on one aspect that I think is most suitable for a broad audience. One of my coauthors, Adam Dor-On, will give a complimentary talk dealing with some more “operator-algebraic” aspects of our work in the Multivariable Operator Theory special session.

[*The interpolation problem for unital completely positive maps is the problem of finding conditions for the existence of a unital completely positive (UCP) map that sends a given set of operators A_1, \ldots, A_d to another given set B_1, \ldots, B_d. See Section 3 below.]

Read the rest of this entry »