Noncommutative Analysis

Category: vN algebras course

Introduction to von Neumann algebras, Lecture 7 (von Neumann algebras as dual spaces, various topologies)

Until this point in the course, we concentrated on constructions of von Neumann algebras, examples, and properties of von Neumann algebras as algebras. In this lecture we turn to study subtler topological and Banach-space theoretic aspects of von Neumann algebras. We begin by showing that every von Neumann algebra is the Banach-space dual of a Banach space. For this to have any hope of being true, it must be true for the von Neumann algebra B(H); we therefore look there first.

(The reference for this lecture is mostly Takesaki, Vol. I, Chapters 2 and 3).

Read the rest of this entry »

Introduction to von Neumann algebras, Lecture 6 (tensor products of Hilbert spaces and vN algebras; the GNS representation, the hyperfinite II_1 factor)

In this lecture we will introduce tensor products of Hilbert spaces. This construction is very useful for exhibiting various operators, and, in particular, it will enable us to introduce new von Neumann algebras. In particular, we will construct the so called hyperfinite II_1 factor.

Read the rest of this entry »

Introduction to von Neumann algebras, Lecture 5 (comparison of projections and classification into types of von Neumann algebras)

In the previous lecture we discussed the group von Neumann algebras, and we saw that they can never be isomorphic to B(H). There is something fundamentally different about these algebras, and this was manifested by the existence of a trace. von Neumann algebras with traces are special, and the existence or non-existence of a trace can be used to classify von Neumann algebras, into rather broad “types”. In this lecture we will study the theory of Murray and von Neumann on the comparison of projections and the use of this theory to classify von Neumann algebras into “types”. We will also see how traces (or generalized traces) fit in. (For preparing these notes, I used Takesaki (Vol I) and Kadison-Ringrose (Vol. II).)

Most of the time we will stick to the assumption that all Hilbert spaces appearing are separable. This will only be needed at one or two spots (can you spot them?).

In addition to “Exercises”, I will start suggesting “Projects”. These projects might require investing a significant amount of time (a student is not expected to choose more than one project).

Read the rest of this entry »

Introduction to von Neumann algebras, Lecture 4 (group von Neumann algebras)

As the main reference for this lecture we use (more-or-less) Section 1.3 in the notes by Anantharaman and Popa (here is a link to the notes on Popa’s homepage).

As for exercises:  Read the rest of this entry »

Introduction to von Neumann algebras, Lecture 3 (some more generalities, projection constructions, commutative von Neumann algebras)

In this lecture we will describe some projection construction in von Neumann algebras, and we will classify commutative von Neumann algebras.

So far (the first two lectures and in this one), the references I used for preparing these notes are Conway (A Course in Operator Theory) Davidson (C*-algebras by Example), Kadison-Ringrose (Fundamentals of the Theory of Operator Algebras, Vol .I), and the notes on Sorin Popa’s homepage. But since I sometimes insist on putting the pieces together in a different order, the reader should be on the look out for mistakes.

Read the rest of this entry »