Noncommutative Analysis

Category: Research

My talk at Fields – video available

Hi just got an email from the Fields Institute that the video recording of my talk “CP-semigroups and Dilations, Subproduct Systems and Superproduct systems,: the Multiparameter Case and Beyond” (on my paper with Michael Skeide I announced here) that I gave at COSY, is now available. The slides are available here. This is the first time I see (and hear!) a recording of myself giving a talk in English and, wow, it’s devastating. Thanks for bearing with me 🙂

Here is a link to the talk:

Seminar talk at the BGU OA Seminar

This coming Thursday (July 2nd, 14:10 Israel Time) I will be giving a talk at the Ben-Gurion University Math Department’s Operator Algebras Seminar. If you are interested in a link to the Zoom please send me an email.

I will be talking mostly about these two papers of mine with co-authors: older one, newer one. Here is the title and abstract:

Title: Matrix ranges, fields, dilations and representations

Abstract: In my talk I will present several results whose unifying theme is a matrix-valued analogue of the numerical range, called the matrix range of an operator tuple. After explaining what is the matrix range and what it is good for, I will report on recent work in which we prove that there is a certain “universal” matrix range, to which the matrix ranges of a sequence of large random matrices tends to, almost surely. The key novel technical aspects of this work are the (levelwise) continuity of the matrix range of a continuous field of operators, and a certain quantitative matrix valued Hahn-Banach type separation theorem. In the last part of the talk I will explain how the (uniform) distance between matrix ranges can be interpreted equivalently as a “dilation distance”, which can be interpreted as a kind of “representation distance”. These vague ideas will be illustrated with an application: the construction of a norm continuous family of representations of the noncommutative tori (recovering a result of Haagerup-Rordam in the d=2 case and of Li Gao in the d>2 case).

Based on joint works with Malte Gerhold, Satish Pandey and Baruch Solel.

Seminar talk

Next Tuesday, May 19th, at 14:30 (Israeli time), I will give a video talk at the Séminaire d’Analyse Fonctionnelle “in” Laboratoire de mathématiques de Besançon. It will be about my recent paper with Michael Skeide, the one that I announced here.

Title: CP-Semigroups and Dilations, Subproduct Systems and Superproduct Systems: the Multi-Parameter Case and Beyond.


Abstract: We introduce a framework for studying dilations of semigroups of completely positive maps on von Neumann algebras. The heart of our method is the systematic use of families of Hilbert C*-correspondences that behave nicely with respect to tensor products: these are product systems, subproduct systems and superproduct systems. Although we developed our tools with the goal of understanding the multi-parameter case, they also lead to new results even in the well studied one parameter case. In my talk I will give a broad outline and a taste of the dividends our work.

The talk is based on a recent joint work with Michael Skeide.

Assumed knowledge: Completely positive maps and C*-algebras.

Feel free to write to me if you are interested in a link to the video talk.

Dilations of q-commuting unitaries

Malte Gerhold and I just have just uploaded a revision of our paper “Dilations of q-commuting unitaries” to the arxiv. This paper has been recently accepted to appear in IMRN, and was previously rejected by CMP, so we have four anonymous referees and two handling editors to be thankful to for various corrections and suggested improvements (though, as you may understand, one editor and two referees have reached quite a wrong conclusion regarding our beautiful paper :-).

This is a quite short paper (200 full pages shorter than the paper I recently announced), which tells a simple and interesting story: we find that optimal constant c_\theta, such that every pair of unitaries u,v satisfying the q-commutation relation

vu = e^{i\theta} uv

dilates to a pair of commuting normal operators with norm less than or equal to c_\theta (this problems is related to the “complex matrix cube problem” that we considered in the summer project half year ago and the one before). We provide a full solution. There are a few ramifications of this idea, as well as surprising connections and applications, so I invite you to check out the nice little introduction.

CP-Semigroups and Dilations, Subproduct Systems and Superproduct Systems: the Multi-Parameter Case and Beyond

Reblogging the announcement of my recent giant paper with Michael Skeide. I want this to be at the head of my blog for a while.

Noncommutative Analysis

Michael Skeide and I have recently uploaded our new paper to the arxiv: CP-Semigroups and Dilations, Subproduct Systems and Superproduct Systems: The Multi-Parameter Case and Beyond. In this gigantic (219 pages) paper, we propose a framework for studying the dilation theory of CP-semigroups parametrized by rather general monoids (i.e., semigroups with unit), and we use this framework for obtaining new results regarding the possibility or impossibility of constructing or having a dilation, we use it also for obtaining new structural results on the “mechanics” of dilations, and we analyze many examples using our tools. We present results that we have announced long ago, as well as some surprising discoveries.

This is an exciting moment for me, since we have been working on this project for more than a decade.

“Excuse me, did you really say decade?”

View original post 2,653 more words