Noncommutative Analysis

Category: Operator algebras

CP-Semigroups and Dilations, Subproduct Systems and Superproduct Systems: the Multi-Parameter Case and Beyond

Michael Skeide and I have recently uploaded our new paper to the arxiv: CP-Semigroups and Dilations, Subproduct Systems and Superproduct Systems: The Multi-Parameter Case and Beyond. In this gigantic (219 pages) paper, we propose a framework for studying the dilation theory of CP-semigroups parametrized by rather general monoids (i.e., semigroups with unit), and we use this framework for obtaining new results regarding the possibility or impossibility of constructing or having a dilation, we use it also for obtaining new structural results on the “mechanics” of dilations, and we analyze many examples using our tools. We present results that we have announced long ago, as well as some surprising discoveries.

This is an exciting moment for me, since we have been working on this project for more than a decade.

“Excuse me, did you really say decade?”

Read the rest of this entry »

The complex matrix cube problem – new results from summer projects

In this post I will summarize the results obtained by my group in the “Summer Projects Week” that took place two weeks ago at the Technion. As in last time (see here for a summary of last year’s project) the title of the project I suggested was “Numerical Explorations of Open Problems from Operator Theory”. This time, I was lucky to have Malte Gerhold and Satish Pandey, my postdocs, volunteer to help me with the mentoring. The students who chose our project were Matan Gibson and Ofer Israelov, and they did fantastic work.

Read the rest of this entry »

Around and under my talk at Fields

This week I am attending a Workshop on Developments and Technical Aspects of Free Noncommutative Functions at the Fields Institute in Toronto. Since I plan to give a chalk-talk, I cannot post my slides online (and I cannot prepare for my talk by preparing slides), so I will write here what some ideas around what I want to say in my talk, and also some ramblings I won’t have time to say in my talk.

[Several years ago I went to a conference in China and came back with the insight that in international conferences I should give a computer presentation and not a blackboard talk, because then people who cannot understand my accent can at least read the slides. It’s been almost six years since then and indeed I gave only beamer-talks since. My English has not improved over this period, I think, but I have several reasons for allowing myself to give an old fashioned lecture – the main ones are the nature of the workshop, the nature of the audience and the kind of things I have to say]. 

In the workshop Guy Salomon, Eli Shamovich and I will give a series of talks on our two papers (one and two). These two papers have a lot of small auxiliary results, which in usual conference talk we don’t get the chance to speak about. This workshop is a wonderful opportunity for us to highlight some of these results and the ideas behind them, which we feel might be somewhat buried in our paper and have gone unnoticed. 

Read the rest of this entry »

Topics in Operator Theory, Lecture 10: hyperrigidity

In this lecture we discuss the notion of hyperrigidity, which was introduced by Arveson in his paper The noncommutative Choquet boundary II: Hyperrigidity, shortly after he proved the existence of boundary representations (and hence the C*-envelope) for separable operator systems. Most of the results and the examples that we will discuss in this lecture come from that paper, and we will certainly not be able to cover everything in that paper. In the last section of this post I will put some links concerning a result of Kennedy and myself which connects hyperrigidity to the Arveson’s essential normality conjecture.

Read the rest of this entry »

Topics in Operator Theory, Lecture 9: the boundary theorem

In this post, we come back to boundary representations and the C*-envelope, prove an important theorem, and see some examples. It is interesting to note that the theory has interesting consequences even for operators on finite dimensional spaces. Here is a link to a very interesting paper by Farenick giving an exposition of Arveson’s boundary theorem in the setting of operators on finite dimensional spaces.

Read the rest of this entry »