Noncommutative Analysis

Month: October, 2018

Topics in Operator Theory, Lecture 1: Introduction

This is a summary of the first lecture, which was introductory in nature.

H will always denote a Hilbert space over \mathbb{C}. B(H) will always denote the algebra of bounded operators on H. I am interested in operators on Hilbert space; various subspaces and algebras of operators that come with various structures, as well as the relationship between these subspaces and structures; and connections and applications of the above to other areas, in particular complex function theory and matrix theory.

I expect students to know the spectral theorem for normal operators on Hilbert space (see here. A proof in the selfadjoint case that assumes very little from the reader can be found in my notes, see Section 3 and 4). I also will assume some familiarity with Banach algebras and commutative C*-algebras – the student should contact me for references.

We begin by surveying different kinds of structures of interest.  Read the rest of this entry »

Course announcement: Operator Spaces, Operator Algebras and Related Topics (Topics in Operator Theory 106435)

Next week I will begin teaching a topics course “Topics in Operator Theory – 106435”. This is an advanced graduate course, where “advanced” means that I expect students to be familiar with graduate functional analysis.

The official name of the course is “Topics in Operator Theory” but the true title is “Operator Spaces, Operator Algebras and Related Topics”. There are two somewhat competing goals driving this course: the first goal is to give students a taste of the beautiful subjects of operator spaces and operator algebras, broadening their view of functional analysis, and giving those who wish enough tools to delve into the literature in this subject. The second goal is to train students to understand the problems in which I am interested and to get acquainted with the methods of the theory so that they will be able to carry out research in my group. The choice of topics will therefore be somewhat eclectic. In fact, I have several different plans for this course, and I am keeping things vague on purpose so that I am free to change course as the wind blows (and as I see who the students are, what their background is and where their interests lie).

What else? The course will be given in English. There is no official web page for the course – I might open exercises online on this blog. The grade will be based on some exercises that I will give throughout the semester, and a final “big homework” project.