### Souvenirs from the Black Forest

#### by Orr Shalit

Last week I attended a workshop titled “Hilbert modules and complex geometry” in MFO (Oberwolfach). In this post I wish to tell about some interesting things that I have learned. There were many great talks to choose from. Below is a sample, in short form, with links.

#### 1. A major advance on Arveson’s essential normality conjecture

One of the most exciting talks for me was the one given by Miroslav Englis, on a recent paper of his together with Joerg Eschmeier on the essential normality conjecture (I explained what this conjecture is about in this previous post). In their paper, Englis and Eschmeier treat what we like to call “the geometric Arveson-Douglas conjecture”, which says that quotient modules of Drury-Arveson space by a *radical* ideal is -essentially normal for every . Englis and Eschmeier prove the conjecture for the case where the variety of the ideal is smooth away from the boundary. Their methods use the theory of generalised Toeplitz operators developed by Boutet de Monvel and Guillemin three decades ago. The theory used is quite technical and perhaps scary for one who is not used to it, but after the talk by Miroslav Englis I felt that the approach is natural, in that the theory used is well suited to deal with self commutators of the shift and estimate them. The authors had to adapt this theory also to the non smooth case (since a homogeneous variety is never smooth).

This result is biggest step forward on this problem since Guo and Wang’s paper in 2008.

At the conference I also learned that Ron Douglas, Xiang Tang and Guoliang Yu also very recently published a paper making the same advance, but using a different approach. What both papers have in common, besides solving the problem, is that they are both based on figuring out how to adapt tools that have been available for thirty years to this problem. Both the existence of the tools, as well as the knowledge of how to carefully use them to this problem, are crucial.

#### 2. Projective spectrum – a spectrum for non commuting tuples

Rongwei Yang gave a very interesting talk about the “projective spectrum”. The outset for this talk is that the spectrum of a Banach algebra element is a central and useful concept in functional analysis. Several notions of spectrum for commuting tuples of Banach algebra elements have been developed over the years (starting immediately after Gelfand’s work). Yang proposes a definition for joint spectrum for a tuple of not-necessarily commuting elements in a Banach algebra.

**Definition:** Let be an -tuple of elements in a unital Banach algebra . For every denote . Let (here is the set of invertible elements in ). Let denote the projection of in projective space .

It is easy to see that when , then and are closely related to the usual spectrum . Also, Yang proves that is always a nonempty compact subset of (Note that will never be compact).

Yang and his collaborators studied the topology and the geometry of the projective spectrum. Their theory has interesting consequences to operators. Here is one result that struck me.

**Theorem: **Let . The tuple is commuting if and only if is a union of hyperplanes.

This has the following surprising result:

**Corollary:** A matrix is normal if and only if the polynomial is a product of linear factors.

For more, see this first paper on the subject by Yang. (Yang says that the corollary is a later observation due to Kehe Zhu).

#### 3. Noncommutative function theory

John McCarthy gave a beautiful talk on noncommutative function theory. There have been several approaches to developing noncommutative function theory, involving J. Taylor, D. Voiculescu, V. Vinnikov and D. Kalyuzni-Verbovetski, B. Solel and P. Muhly, G. Popescu and many others too. McCarthy presented his take at the subject, which he developed together with J. Agler (here are three papers on the arxiv related to the talk: one, two, three).

So what is **“noncommutative function theory”**? Let us recall first that given an operator one can always define whenever is a polynomial. One can go further and develop a holomorphic functional calculus (see these two previous posts): there is a way to define whenever is a holomorphic function in a neighbourhood of .

Now suppose we have several operators . If the operators commute, there is an obvious way in which one can apply polynomials in several variables to them – just plug the operators into the polynomial (and there is also a way to extend this to functions that are holomorphic in a neighbourhood of the *joint spectrum*). If the operators do not commute, then we are in trouble, since the functional calculus is no longer a homomorphism. Indeed, suppose that we have two non commuting operators and and that we have the polynomials and . Then we would like to define and , nothing else makes sense. But if denotes the polynomial , then . However, , so we can’t define in a consistent way.

This problem is easily overcome by defining a functional calculus for *noncommutative polynomials*, that is polynomials in non commuting variables. A polynomial in non commuting variables is just a polynomial with variables where the order in which the variables are written matters. Whenever we have operators (commuting or not) and a noncommutative polynomial then there is an obvious way to evaluate at .

However this simple functional calculus is not enough. We would like to have a holomorphic functional calculus, that is we would like to be able to evaluate the holomorphic functions in non commuting variables at the tuple . **But what is a holomorphic function in non commuting variables**? (There is also the question “**why would we like to do this**?”, and I hope to show below that indeed it is a fruitful thing to do.)

As I wrote above, there are several approaches to the subject, and this is how Agler and McCarthy answer the above question.

For every , denote by the set of all -tuples of matrices. For and , we let denote the -tuple in with elements

, .

We denote my , so this is all -tuples of matrices, running over all .

**Definition:** An **nc-set** is a set such that the following conditions hold:

- For all , the intersection is open,
- If then ,
- If and is unitary then .

The set is an nc-set, for example. So is the union of all tuples of matrices in the open unit ball, or union of all strict row contractions.

On these sets we may define noncommutative functions. A function is called a **graded function** if it maps into . (As an example, note that noncommutative polynomials are graded functions.)

**Definition:** An **nc-function** on and nc-set is a graded function such that

- ,
- If and is an invertible matrix such that , then .

Again, it is easy to check that noncommutative polynomials are nc-functions. Indeed, it seems that these requirements are the bare minimum that we might ask from functions which are to be in some sense limits of noncommutative polynomials.

Until now everything is completely algebraic. In order to obtain analytic results, one needs to introduce a topology. Without going into detail, let us assume that there is a “good” topology defined on . This allows us to define holomorphic functions.

**Definition:** A **noncommutative holomorphic function **on an nc set is a continuous nc function.

(Actually, Agler and McCarthy define a holomorphic function to be just a locally bounded nc-function, but they prove that continuity follows, so for simplification I throw continuity into the definition.)

A remarkable consequence of this definition – just the bare algebraic requirements together with continuity – is that a holomorphic function is differentiable. The simple proof is as remarkable as the result.

**Proposition:** If is a noncommutative holomorphic function on , then for every and , the limit

exists.

**Proof:** The idea of the proof: do some block matrix computations, and read the derivative from the entry. Here is what this means. First write down the simple identity :

,

where and (and is a small complex number). Applying to both sides, and using the properties of nc functions, we find

Now letting we find that exists, and can simply be read off the top-right entry in the right hand side of the above equation!

(Note that there is content here also when there is just one variable.)

This neat theorem is just the starting point. One of the subtleties is that different choices of topologies lead to rather different notions of holomorphic functions, and different theorems are available. If the topology is “free”, then holomorphic functions can be locally approximated by noncommutative polynomials, in analogy to analytic functions in one complex variable.

On the other hand, if the topology is “fat”, then they obtain the following implicit function theorem.

**Implicit function theorem ( version):** Suppose that is a “fat” open set, and let be holomorphic on . Suppose that and that is a full rank map. Then there exists an open neighbourhood of and a holomorphic function of one variable such that near the set is given as .

(**Remark:** Note that differentiation here is defined slightly differently from above. It is an exercise to sort out what this means.)

The implicit function theorem has the following remarkable consequence: a generic matrix solution to a (noncommutative) polynomial equation in two variables is, in fact, commuting. For example, consider

We calculate . This is a full rank map unless intersects . This usually does not happen. Thus if we find a solution that satisfies the algebraic equation

where does not intersect , then the implicit function theorem tells us that , and so and commute! (The implicit function theorem is from this paper. I hope this application is convincing that developing noncommutative function theory is worthwhile.)

#### 4. More on multipliers of Drury-Arveosn space

Jingbo Xia presented a joint work with Quanlei Fang where (among other things) they answer in the negative the following question about the characterisation of multipliers on Drury-Arveson space :

**Question:** Let , and suppose that . Does it follow that ?

Here denotes the normalised reproducing kernel at . As I indicated above, the answer to this question is No. This does not come as a gigantic surprise, but it fills a hole in our knowledge, and the proof is hard.

I found this interesting because, as Xia points out, this answers an even simpler question that we did not know the answer to. Recall that since , every multiplier is in (in particular an analytic function). Moreover, it is standard that every multiplier (on every Hilbert function space) is a bounded function. Thus

Fang and Xia’s result shows that this containment is strict.

#### 5. Ken Davidson awarded “Distinguished Career Award”

Finally, some happy news for anybody working in operator algebras and operator theory. (This was not a talk in the workshop, of course, but something I learned while eavesdropping to a conversation.) The Canadian Math Society decided to award Kenneth R. Davidson the 2014 David Borwein Distinguished Career Award. Here is the press release. Congratulations Ken!

[…] couple of years ago, after being inspired by lectures of Agler, Ball, McCarthy and Vinnikov on the subject, and after years of being influenced by Paul Muhly and Baruch […]

[…] Arveson-Douglas conjecture, and I worked on this conjecture on and off for several years (see here, here, here and here for earlier posts of mine mentioning this conjecture). That’s one way I got to […]